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Abstract

This paper combines a state-of-the-art method for solving the three-dimensional preconditioned Navier–Stokes equa-
tions for compressible flows with an immersed boundary approach, to provide a Cartesian-grid method for computing
complex flows over a wide range of the Mach number. Moreover, a flexible local grid refinement technique is employed
to achieve high resolution near the immersed body and in other high-flow-gradient regions at a fraction of the cost required
by a uniformly fine grid. The method is validated versus well documented steady and unsteady test problems, for a wide
range of both Reynolds and Mach numbers. Finally, and most importantly, for the case of the laminar compressible steady
flow past an NACA-0012 airfoil, a thorough mesh-refinement study shows that the method is second-order accurate.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The immersed boundary (IB) method simplifies the grid generation process for the simulation of flows with
complex and/or moving solid boundaries, by avoiding the need for a body-fitted mesh. The IB technique was
originally developed for incompressible flows [1–5] using uniform and stretched Cartesian grids in order to
take advantage of simple numerical algorithms. To date, the only documented IB method for compressible
flows is due to some of the authors [6]. Such an approach, which uses the two-dimensional preconditioned
Navier–Stokes equations to obtain accurate and efficient solutions for a wide range of the Mach number,
employs structured grids, which allow a low flexibility in distributing the grid points. In fact, since mesh lines
run through the entire computational domain, by clustering grid points near solid bodies a high density of grid
points is obtained also in regions away from them, where flow-gradients are usually small. A flexible local grid
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refinement (LGR) technique is thus warranted, using a fine grid in the high-flow-gradient regions and coars-
ening it where the flow is smooth.

This is the very purpose of this work, which provides a second-order-accurate IB method for compressible
flows in two and three space dimensions using an LGR approach to solve flows with high gradients, such as
boundary layers, wakes and shocks.

The details of the numerical method are described at first, namely: the discretization scheme, the interpo-
lation procedure at the interface cells, and the semi-structured approach to handle locally refined grids. The
method is then validated by computing several well documented test cases. The steady incompressible flows
past a circular cylinder and a sphere at moderate Reynolds numbers are considered to test both the LGR-
IB technique and the preconditioning strategy, in two and three dimensions, respectively. The low-speed
unsteady flow past a heated circular cylinder is computed to test the unsteady dual-time-stepping approach
as well as the implementation of the energy equation and of its boundary conditions. The laminar compress-
ible flow past an NACA-0012 airfoil, the supersonic turbulent flow past a circular cylinder, and the transonic
turbulent flow past an RAE2822 airfoil are then considered to validate the LGR-IB technique in the presence
of a critical separation region, very high flow-gradients and turbulence. Finally, and most importantly, a thor-
ough mesh-refinement study is performed for the steady laminar flow past an NACA-0012 airfoil, which
shows that the proposed LGR-IB method is indeed second-order accurate at all interior and boundary cells.

2. Governing equations and numerical method

The Reynolds averaged Navier–Stokes (RANS) equations, written in terms of Favre mass-averaged quan-
tities and using the k–x turbulence model, can be written as follows:
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In the equations above: ~H and pt are the total enthalpy and the pressure, comprehensive of the turbulent
kinetic energy, k,
~H ¼ hþ 1

2
juj2 þ 5

3
k; pt ¼ p þ 2

3
qk: ð6Þ
The eddy viscosity, lt, is defined in terms of k and of the specific dissipation rate, x, according to the k–x
turbulence model of Wilcox [7], namely:
lt ¼ c�
qk
x
: ð7Þ
ŝij indicates the sum of the molecular and Reynolds (sij) stress-tensor components. According to the Bous-
sinesq approximation, one has:
ŝij ¼ ðlþ ltÞ
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The heat flux vector components, qj, are given as:
qj ¼ �
l
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þ lt

Prt

� �
oh
oxj

; ð9Þ
where Pr and Prt are the laminar and turbulent Prandtl numbers, equal to 0.71 and 1, respectively.
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Finally, the molecular viscosity coefficient is computed by Sutherland’s law and the coefficients of the low-
Reynolds-number k–x turbulence model of [7] are used.

It is convenient to rewrite the RANS equations (1)–(5) in compact form, as:
oQ
ot
þ oE

ox
þ oF

oy
þ oG

oz
� oEv

ox
� oF v

oy
� oGv

oz
¼ D; ð10Þ
where Q is the conservative variable vector, E, F, G and Ev, Fv, Gv indicate the inviscid and viscous fluxes,
respectively, and D is the vector of the source terms.

A pseudo-time derivative is added to the left-hand side of Eq. (10) in order to use a time marching approach
for both steady and unsteady flows; the preconditioning matrix, C, proposed in [8–10], is used to premultiply
the pseudo-time derivative in order to maintain a good accuracy and efficiency of the method at all flow
speeds. The final system reads:
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where Qv ¼ ðpt; u; v;w; T ; k;xÞ
T is the primitive variable vector, which is related to Q by the Jacobian matrix

P ¼ oQ=oQv. Discretizing equation (11) by an Euler implicit scheme in the pseudo-time and approximating the
physical-time derivative by a second-order-accurate three-point backward difference, the following semi-dis-
crete equation is obtained in delta form:
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where r and Ds indicate the pseudo-time level and step, n and Dt indicate the physical-time level and step,
Av ¼ oE=oQv, Bv ¼ oF =oQv, Cv ¼ oG=oQv, and Rij are the viscous coefficient matrices [11]. The steady residual
is given as:
Rr ¼ oðEr � Er
vÞ

ox
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vÞ
oy
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vÞ

oz
� Dr; ð13Þ
and the delta unknowns to be annihilated iteratively (at each physical time step, for the case of unsteady flows)
read:
DQv ¼ Qrþ1
v � Qr

v: ð14Þ

The left-hand side (LHS) of Eq. (12) is modified to improve the efficiency of the method, without affecting the
residual, that is, the solution. Firstly, the non-orthogonal viscous coefficient matrices, Rxy, Rxz, Ryx, Ryz, Rzx,
and Rzy, are neglected, and the remaining ones are approximated by the corresponding spectral radii multi-
plied times the identity matrix, Rxx ¼ RxI, Ryy ¼ RyI, and Rzz ¼ RzI; then, as proposed in [11], the pseudo-
and physical-time terms are grouped together into a new term S,
S ¼ Cþ 3

2
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P; ð15Þ
which is factored out of the LHS in Eq. (12), yielding:
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In order to solve the resulting linear system, the diagonalization procedure of Pulliam and Chaussee [12] is
applied. The matrices S�1Av, S�1Bv and S�1Cv are written as:
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S�1Av ¼MxKxM
�1
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S�1Bv ¼MyKyM
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where Mx, My, Mz are the right-eigenvector matrices, M�1
x , M�1

y , M�1
z are the left-eigenvector matrices, and

Kx, Ky and Kz are diagonal matrices containing the eigenvalues of S�1Av, S�1Bv and S�1Cv, respectively.
Therefore, Eq. (16) is rewritten as:
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The LHS of Eq. (20) is then factorized, to reduce the bandwidth of the matrices associated with the algebraic
system to be solved at each pseudo-time level:
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Finally, the BiCGStab [13] approach is employed to solve the system above by the following six steps:
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A collocated cell-centred finite volume space discretization is used. The convective terms at the right-hand side
are discretized using either an upwind flux-difference-splitting scheme with second- or third-order accuracy, or
a second-order-accurate centred scheme. The viscous terms are discretized by second-order-accurate centred
differences. The LHS convective term is always discretized using a first-order-accurate upwind scheme, accord-
ing to a deferred-correction approach, so as to guarantee the diagonal dominance of the matrices, while reduc-
ing their bandwidth. Finally, the boundary conditions are imposed explicitly, namely, using the flow variables
computed at the old pseudo-time level.

2.1. Grid generation

The IB technique used in this work is based on that proposed in [3,4]. In a preliminary step, the geometry
under consideration, which is described by a closed curve in two dimensions (a closed surface in three dimen-
sions), is overlapped onto a Cartesian (non uniform) grid. Using the ray tracing technique based on the geo-
metrical algorithms reported in [14], the computational cells occupied entirely by the flow are tagged as fluid

cells; those whose centres lie inside the immersed body are tagged as solid cells; the remaining ones are tagged
as interface cells. The present local grid refinement (LGR) procedure follows those introduced in [15,16]. The
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Fig. 1. Semi-structured grids with different refinements: (a) immersed boundary; (b) immersed boundary + wake; (c) immersed
boundary + wake + shock.
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following description of the algorithm refers to two dimensions, the extension to three dimensions being
straightforward. Starting from an initial Cartesian coarse grid, the auxiliary grid is generated by recursively
halving the mesh size, until an assigned target value is reached at the immersed boundary. In more detail,
a tag function, generated using the ray tracing technique, is used to mark the cells inside and outside the
immersed body: an integer value ±1 is assigned to fluid and solid cells, respectively. The numerical gradient
of this function is different from zero only at the immersed boundary and depends on the local grid size.
The components of such a gradient in the x and y directions are used to select the cells to be refined. The
refinement process is terminated when a user specified resolution, namely, a prescribed value of the gradient
of the tagging function, is achieved at the boundary. It is noteworthy that such a refinement extends to all rows
and columns of the computational grid, so that it applies also to regions of high flow-gradients. Then, the
semi-structured mesh is obtained by coarsening (grouping) the cells far from the boundaries and such regions
until the maximum prescribed cell-size is achieved, see, e.g., Fig. 1. It is noteworthy that this approach is very
efficient insofar as the cell tagging takes full advantage of the alignment of the cell centres and the grid nodes.

2.2. Data structure

The auxiliary (uniformly fine structured Cartesian) grid is employed to handle the data structure of the
semi-structured locally refined grid (see Fig. 2). The auxiliary grid covers the whole computational domain
N1

W1

W2

E1

S1 S2

P

(i,j)

(i+2,j+2)

i+Δi=const

j=const

i=const

j+Δj=const

Fig. 2. Locally refined grid showing a cell P and its neighbours.
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employing the finest mesh level of the semi-structured grid. Therefore, each cell of the semi-structured grid is
bounded by the lines passing through the vertices (i, j) and ðiþ Di; jþ DjÞ, where the indices i ¼ 0; . . . ;N i and
j ¼ 0; . . . ;N j refer to the auxiliary grid and Di and Dj are integers, equal to or greater than one, depending on
(i, j), see Fig. 2. The major advantage of this approach with respect to classical OCTREE based [17] and fully-
unstructured [18] ones lies in the economy and flexibility of storing and retrieving connectivity informations
employing the auxiliary grid. In particular, having an auxiliary grid with Ni · Nj cells, the N < N i � N j cells
belonging to the semi-structured grid are defined using the two couple of indices (i, j) and ðDi;DjÞ, with a total
memory requirement of 4N integers. In addition, an array of integers, IDði; jÞ, is needed to store the correspon-
dence between the cells of the auxiliary and semi-structured grids. All of the cells of the auxiliary grid not
employed in the semi-structured one, namely, those included in the range ½i : iþ Di� 1� and ½j : jþ Dj� 1�,
are tagged using the same cell number (see Figs. 2 and 3). The total storage required for allocating IDði; jÞ
is equal to Ni � Nj integers. The connectivity information for each cell are retrieved by querying the array
IDði; jÞ.

2.3. Flux evaluation in the semi-structured grid

For each face, the contributions of the neighbouring cells are collected to build the corresponding convec-
tive operators for the cell. For example, referring to the cell L1 in Fig. 4, the flux balance along the horizontal x

direction reads:
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Fig. 3. Cell identification array on the fine underlying grid (ID) showing one-to-one connectivity.
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Fig. 4. Flux evaluation in the x-direction at the right face of the cell L1.
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In the equation above, R and L indicate the cell centres at the right and left sides of the face, respectively, one
and two subscripts being employed for the first and second row of cells (see Fig. 4); moreover, N y

X is the num-
ber of the neighbouring cells of the cell X on the y side. Matrices C; Mx; K�x and M�1

x are calculated using the
averaged variables according to Roe’s linearization [19] and the values of /1 and /2 are provided in Table 1 for
the three schemes used in this work. The maximum number of neighbours for each face is limited to two for
2D computations and four for 3D ones, each face being split into equal parts. A similar approach is employed
to build the centred diffusive operator. When computing flows with shocks, a total variation diminishing
scheme, with minmod limiter function, is employed in conjunction with the second- and third-order-accurate
upwind schemes.

A final comment is warranted. The local refinement strategy, handled by the data structure described
above, allows one to reduce dramatically the number of cells with respect to the Cartesian grid covering
the whole computational domain with the same finest mesh level, namely, the auxiliary grid. In fact, in the
present calculations the reduction of the number of cells varies in the range 85–98%, depending on the test
case. On the other hand, the CPU overhead per iteration and cell, with respect to the same code using the
(uniformly fine) auxiliary grid is always less then 10%. Considering that local coarsening also accelerates con-
vergence, the efficiency gain is paramount.

2.4. Boundary conditions

The application of the boundary conditions at the immersed boundary is treated explicitly by assigning the
values of the variables at the interface cells. At solid cells, the velocity components are set to zero and, in
the case of assigned surface temperature, the temperature is set equal to the wall value. At the interface cells,
the direct forcing approach is used, namely, the flow variables are computed by interpolating the values at the
surrounding fluid cells, at the old pseudo-time level, and the assigned values at the wall. For each interface cell
it is possible to find Nnbr contiguous fluid cells and Nib intersections of the faces of the cell with the immersed
boundary. For the case of Dirichlet boundary conditions, the following interpolation formula is used:
Table
Coeffic

Order

2nd-U
2nd-C
3rd-Up
/int ¼
XNnbr

i

ai

q
/i þ

XNib

j

bj

q
/j;wall; ð30Þ
where /j,wall is the value of the flow variable to be imposed at the immersed surface, ai ¼ 1=di and bj ¼ 1=Dj, di

and Dj being the distances of each interface cell centre from each surrounding cell centre and from each wall
intersection, respectively, and
1
ients for the three schemes

/1 /2

pwind 1/2 �1/2
entred 0 0
wind 1/6 �1/6
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q ¼
XNnbr

i

ai þ
XNib

j

bj: ð31Þ
It is noteworthy that, in the one-dimensional case, this procedure recovers the linear interpolation scheme used
in [3,6]. For the case of Neumann boundary conditions, the prescribed normal derivative is imposed at the
interface cells and /j,wall and /int are related by assuming a linear reconstruction for / and approximating
the normal direction with the direction along which the distance Dj is calculated, to give:
/j;wall ¼ /int �
o/
on

� �
int

Dj: ð32Þ
Substituting Eq. (32) into Eq. (30), the value of the flow variable to be imposed at the interface cell is finally
obtained as:
/int ¼
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For the case of zero normal derivative at the wall one has ðo/=onÞint ¼ 0 and the final equation reads:
/int ¼
PNnbr

i
ai
q /i

1�
PNib

j
bj

q

: ð34Þ
Such a condition is always imposed to the pressure, according to the boundary layer theory, and also to the
temperature, in the case of adiabatic walls. As far as the other boundary conditions are concerned, the com-
putational domain, which extends far enough away from the body, is limited by inlet and outlet boundaries,
where standard characteristic boundary conditions are imposed, and far-field boundaries, where free-shear
boundary conditions are imposed.

3. Results

Several well documented test cases have been used to validate the proposed methodology. In all calcula-
tions, the L2 norm of the maximum residual has been reduced to 10�7 and the second-order-accurate upwind
scheme has been used for the inviscid fluxes, unless otherwise specified.

3.1. Incompressible flow past a circular cylinder

The two-dimensional incompressible flow past a circular cylinder has been considered to test both the pre-
conditioning strategy and the immersed boundary method versus steady flows at very low Mach numbers. The
free-stream Mach and Reynolds numbers, the latter being based on the cylinder diameter, D, are: M = 0.03
and Re = 40. A rectangular computational domain has been used with the inlet and outlet vertical boundaries
located at xi = �40D and xo ¼ 80D and the two horizontal far-field boundaries located at yff ¼ �40D, respec-
tively, the origin coinciding with the centre of the cylinder. The second-order-accurate centred scheme has
been employed for the inviscid fluxes. Computations have been performed using a semi-structured grid with
39,964 cells and 283,106 faces, based on an auxiliary grid with 822 · 407 cells. A local view of the mesh is given
in Fig. 5. The computed length of the symmetrical separation region, L, angle of separation, h, both measured
from the trailing edge of the cylinder, and drag coefficient, CD, are provided in Table 2, together with the cor-
responding experimental [20,21] and numerical [22–24] results available in the literature. The agreement is
quite satisfactory.
3.2. Incompressible flow past a sphere

The flow past a sphere has been computed to test the flow solver and the immersed boundary method versus
a three-dimensional application. A single value of the free-stream Mach number, M = 0.03, and four values of
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Fig. 5. Local view of the grid.

Table 2
Incompressible steady flow past a circular cylinder at Re = 40

L h (�) CD

Fornberg [22] 2.24 55.6 1.50
Dennis and Chang [23] 2.35 53.8 1.52
Coutanceau and Bouard [20] 2.13 53.5 –
Tritton [21] – – 1.59
Linnick and Fasel [24] 2.28 53.6 1.54
Present 2.23 53.7 1.49
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the Reynolds number (based on the sphere diameter, D), namely, 40, 60, 80, and 100, have been considered.
The inlet and outlet boundary planes are located at xi ¼ �40D and xo ¼ 80D and the far-field boundaries are
located at yff ¼ �40D and zff ¼ �40D, the origin of the computational box coinciding with the centre of the
Fig. 6. Local view of the grid.
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sphere. Computations have been performed using the third-order-accurate upwind scheme and a semi-struc-
tured mesh with 231,031 cells and 2,182,547 faces, the corresponding auxiliary mesh containing
446 · 199 · 185 cells, namely, 70 times more cells. The grid is refined at the sphere surface and in a box sur-
rounding the sphere and the wake, in order to describe accurately the boundary layer, the separation region,
and the wake. A local view of the mesh is given in Fig. 6. According to Batchelor [25], the flow around a sphere
firstly separates at Re ’ 24 and the axial length of the separation bubble grows linearly up to Re ’ 100, see
Fig. 7, where the present results are seen to agree well with such an experimental finding. Moreover, Figs.
8 and 9 show the drag coefficient versus Re and the computed pressure coefficient profile along the sphere sur-
face for Re = 100, as compared with the experimental data of Clift et al. [26] and the benchmark solution of
Fornberg [22], respectively.

3.3. Unsteady flow past a heated circular cylinder

The unsteady two-dimensional low-Mach-number flow past a heated circular cylinder has been used as an
interesting test case to validate both the time accuracy of the method and the correct implementation of the
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Fig. 8. Drag coefficient vs Re.
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energy equation, insofar as the temperature fields has a significant influence on the flow pattern, especially
when the ratio between the cylinder wall temperature, and the free-stream one, T � ¼ T w=T1, exceeds 1.1
[27,28]. Moreover, for a given Re, the Strouhal number, St ¼ fD=U1, decreases for increasing values of
T* [27].

The computational domain has the inlet and outlet vertical boundary planes located at xi ¼ �10D and
xo ¼ 40D, and the far-field horizontal boundaries located at yff ¼ �15D, the origin of the box coinciding with
the centre of the cylinder. Computations have been performed using a centred space discretization and a semi-
structured mesh with 41,509 cells and 293,647 faces, based on an auxiliary grid with 796 · 379 cells. The grid is
refined at the body surface and in a box surrounding the cylinder and the wake, in order to solve accurately the
thermal boundary layer and the vortex shedding. The physical time step has been chosen in order to have
about 500 steps per period; about 250 pseudo time steps are needed to reduce the maximum L2 norm of
the residual to 10�6 at each physical time level. Fig. 10 shows the computed values of the Strouhal number,
St, for Re ¼ 100; 120; 140 and T � ¼ 1:0; 1:1; 1:5; 1:8, together with the experimental data provided in [27,28]: a
very good agreement is obtained – also with the numerical results obtained with the structured version of the
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Fig. 10. St vs Re for various values of T*.
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code [6], not shown in the figure. Figs. 11 and 12 show the temperature and density contours for Re = 100 and
T � ¼ 1:8.

3.4. Flow past an NACA-0012 airfoil

The subsonic flow past an NACA-0012 airfoil at a = 0, M ¼ 0:5, and Re = 5000 has been considered since
it experiences a small separation region at the trailing edge of the airfoil. Therefore, it is appropriate for val-
idating numerical methods in general [29] and the accuracy of the present IB one, in particular.

Three grids have been used to discretize the computational domain ½�20c; 21c� � ½�20c; 20c�, c being the
chord-length of the airfoil, whose leading edge is located at the origin. The grids employ 11,275 (grid01),
18,485 (grid02), and 34,350 (grid03) cells and the mesh sizes at the wall are equal to 5 · 10�3c, 10�3c, and
5 · 10�4c, respectively. Such grids correspond to three auxiliary grids with 58 · 334, 679 · 750, and
1404 · 1676 cells, respectively. Figs. 13 and 14 provide the computed skin friction coefficient distributions
along the airfoil and close to the separation point, respectively. The solutions obtained using the two finest
grids are shown to coincide within plotting accuracy and are in good agreement with the numerical results
0 2 4 6 8 10-4contours for = 100 andTff¼ 1: 8:Tmin=T1¼ 1,Tmax=T112. Density contours forRe= 100 andTff¼1:8:qmin=q1¼0:5,qmax=q1¼1,Dq=q1¼0:01.Computational Physics 225 (2007) 2098–21172109
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of [29], also given in the figures. It is indeed remarkable that an accurate prediction of the separation point is
obtained by an IB method using only about 18,000 cells.

3.5. Supersonic flow past a circular cylinder

The steady turbulent supersonic flow past a circular cylinder has been considered as a suitable test case to
validate the method for compressible flows with shocks. Two cases have been computed with M = 1.3 and 1.7,
the free-stream Reynolds number and the inlet values of the turbulence kinetic energy and specific dissipation
rate being Re ¼ 2� 105, k=U 2

1 ¼ 0:0009, and xD=U1 ¼ 40, respectively. The free stream flow encounters a
bow shock ahead of the cylinder, then it accelerates along the cylinder surface forming a supersonic-flow
region which envelops the subsonic recirculation region behind the cylinder and generates two symmetric tail
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Fig. 14. Local view of the skin friction coefficient distribution near the separation point.
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shocks. Results have been obtained using the TVD third-order-accurate upwind scheme and a rectangular
computational domain with dimensions ½�10D; 15D� � ½�10D; 10D�, D being the diameter of the cylinder cen-
tred at the origin. Coarse-grid preliminary computations have been performed to locate the shocks, approx-
imately. Then, the coarse meshes have been refined around the shocks and in the wake, to obtained the final
semi-structured grids having 107,305 cells and 771,180 faces, corresponding to an auxiliary 1947 · 2159 mesh,
for the case M = 1.3, and 75,556 cells and 545,699 faces, corresponding to an auxiliary 1805 · 2159 mesh, for
the case M = 1.7. Local views of such grids are shown in Figs. 15 and 16, the Mach number contours are
shown in Figs. 17 and 18, where all high-flow-gradient regions appear well resolved, and the computed pres-
sure coefficient distributions along the surface of the cylinder are provided in Figs. 19 and 20, together with the
experimental data of [30]. The computed separation angles, measured clockwise from the leading edge, are
equal to 105� and 113� for M = 1.3 and 1.7, respectively, which agree well with the corresponding experimen-
tal data of [30], namely, 103� and 112�. Moreover, the computed and experimental drag coefficients are equal
to 1.45, 1.48 for M = 1.3 and 1.41, 1.43 for M = 1.7. In conclusion, all numerical results agree reasonably well
with the experimental data and are in good agreement with the numerical solutions obtained using the same
numerical method and a body-fitted grid [6].
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3.6. Transonic flow past an RAE 2822 airfoil

The turbulent transonic flow past the supercritical RAE 2822-airfoil has been computed as a suitable test
case involving shock/boundary layer interaction. The flow-condition case 10 [31] has been considered with:
M ¼ 0:75, Re ¼ 6:2� 106 (based on the far-field conditions and on the chord length, c), incidence angle
a ¼ 3:19�. Such a test case is particularly severe since a separation bubble occurs close to the shock location;
therefore, the separation length and the position of the shock are highly sensitive to the near-wall flow reso-
lution and to the turbulence modeling. The flow conditions used in the EUROVAL project [32] are employed
here to correct the tunnel data for wall-effects, namely: M ¼ 0:754, Re ¼ 6:2� 106, a ¼ 2:57�. The inlet and
outlet boundary planes are located at xi ¼ �20c and xo ¼ 30c, respectively, and the far-field boundaries are
located at yff ¼ �20c, the origin of the box coinciding with the leading-edge of the airfoil. Computations have
been performed using the TVD third-order-accurate upwind scheme and a mesh with 169,312 cells and
1,214,772 faces. The Mach number contours are shown in Fig. 21, whereas the pressure coefficient distribution
along the profile is provided in Fig. 22, together with the experimental data: an excellent agreement is
obtained. 2
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3.7. Mesh-refinement study

Finally, the steady compressible flow past an NACA-0012 airfoil with free-stream conditions M = 0.8,
Re = 20 and angle of attack equal to 10� has been computed to verify the order of accuracy of the method.
Five grids have been used to discretize the computational domain ½�10c; 11c� � ½�10c; 10c�, c being the chord-
length of the airfoil, whose leading edge is located at the origin. Starting from the coarsest grid, which is
locally refined near the airfoil, each finer grid has been obtained by dividing each cell into four identical sub-
cells, thus preserving the topology of the semi-structured grid. The numbers of cells for each grid are reported
in Table 3. Richardson’s extrapolation has been applied to find the reference exact solution. Considering the
two finest grids and assuming a second-order-accurate solution for sufficiently small mesh sizes, for any flow
variable, /, the extrapolated value /e has been computed as:



/e ¼
1

3
ð4/5 � /4Þ; ð35Þ
where /4 is the bilinearly interpolated / from grid 4 onto grid 5. Then, the exact solution has been interpo-
lated bilinearly to provide the exact values at all cell-centres of grids 1–4 needed to evaluate the error norms
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for all grids. The L1, L2, and L1 norms of the errors computed over all fluid and interface cells for the flow
variables u, v, p, and T, non-dimensionalized by the free-stream values, are reported in Figs. 23 and 24. The
convergence rates of the errors show second-order accuracy even for the L1 norms. Therefore, the forcing
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procedure based on the linear reconstruction does not spoil the order of accuracy of the space discretization
and the present LGR-IB method is indeed second-order-accurate.

4. Conclusions

This paper provides a numerical method for solving the three-dimensional preconditioned compressible
Navier–Stokes and Reynolds-averaged Navier–Stokes equations using a Cartesian locally refined semi-struc-
tured grid. The proposed immersed boundary method is suitable for computing complex flows of industrial
interest in a wide range of the Mach number, thanks to its local grid refinement strategy, which allows one
to achieve high resolution near the body and in regions of high flow-gradients, while saving cells in other
regions of the computational domain. The method has been validated versus well documented steady and
unsteady test problems, in the highly subsonic, transonic, and supersonic flow regimes, demonstrating its ver-
satility as well as its accuracy for moderate values of the Reynolds number. Most importantly, for the laminar
compressible steady flow past an NACA-0012 airfoil, the method is shown to be second-order accurate by
means of a thorough mesh-refinement study.
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